четвер, 26 лютого 2015 р.

Аксіоми стереометрії. ПАРАЛЕЛЬНІ ПРОЕКЦІЇ ФІГУР НА ПЛОЩИНУ

Аксіоми стереометрії

I. Яка б не була пряма, існують точки, що належать цій прямій, і точки, що не належать їй.
Через будь-які дві точки можна провести пряму, й тільки одну.
II. Із трьох точок на прямій одна й тільки одна лежить між двома іншими.
III. Кожний відрізок має певну довжину, більшу від нуля. Довжина відрізка дорівнює сумі довжин частин, на які він розбивається будь-якою його точкою.
IV. Пряма, що належить площині, розбиває цю площину на дві півплощини.
V. Кожний кут має певну градусну міру, більшу від нуля. Розгорнутий кут дорівнює . Градусна міра кута дорівнює сумі градусних мір кутів, на які він розбивається будь-яким променем, що проходить між його сторонами.
VI. На будь-якій півпрямій від її початкової точки можна відкласти відрізок даної дов­жи­ни, й тільки один.
VII. Від півпрямої на площині, що містить її, можна відкласти в задану півплощину кут із даною градусною мірою, меншою за , і тільки один.
VIII. Який би не був трикутник, існує трикутник, що дорівнює йому, у даній площині в заданому розміщені відносно даної півпрямої у цій площині.
IX. На площині через дану точку, що не лежить на даній прямій, можна провести не більш як одну пряму, паралельну даній.
До цих аксіом додаються три аксіоми ­групи С.
. Яка б не була площина, існують точки, що належать цій площині, і точки, які не належать їй.
. Якщо дві різні площини мають спільну точку, то вони перетинаються по прямій, що проходить через цю точку.
. Якщо дві різні прямі мають спільну точку, то через них можна провести площину, й до того ж тільки одну.
Теорема 1. Через пряму і точку, яка не лежить на ній, можна провести площину, й до того ж тільки одну.
Теорема 2. Через пряму можна провести дві різні площини (див. рисунок).

Теорема 3. Якщо дві точки прямої належать площині, то вся пряма належить цій площині.
Отже, можливі три варіанти взаємного розміщення прямої і площини в просторі.
1. Пряма лежить у площині (рисунок зліва).
2. Пряма перетинає площину в даній точці (рисунок справа).

3. Пряма не перетинає площину (див. рисунок). У даному випадку пряма а називається паралельною площині.

Теорема 4. Через три точки, які не лежать на одній прямій, можна провести площину, й до того ж тільки одну.
Для розв’язання задач можуть бути корисними такі твердження.
1. Якщо дві різні прямі перетинаються у деякій точці (рисунок нижче зліва), то всі прямі, які перетинають обидві дані прямі й не проходять через цю точку, лежать в одній площині.
2. Усі прямі, які перетинають дану пряму й проходять через дану точку поза прямою, лежать в одній площині (рисунок справа).


Паралельність прямих і площини

Дві прямі в просторі називаються паралельними, якщо вони лежать в одній площині й не перетинаються. Прямі, які не лежать в одній площині, називаються мимобіж­ними.
Зверніть увагу: «не лежать в одній площині» і «лежать у різних площинах» — це різні твердження. Наприклад, паралельні прямі a і b лежать у різних площинах  і  (див. рисунок), але через них можна провести площину, яка міститиме a і b водночас.

Для мимобіжних прямих (див. рисунок) не існує такої площини, у якій вони лежали б водночас.

Можна довести, що всі прямі, які перетинають дві паралельні прямі, лежать в одній площині.
Теорема. Через точку, яка не лежить на даній прямій, можна провести пряму, паралельну даній, і тільки одну.
Результат пошуку зображень за запитом "КНИГА фігури на піску ГЕОМЕТРІЯ"

Ознака паралельності прямих

Теорема. Дві прямі, паралельні третій прямій, паралельні між собою.
Із цієї теореми випливає, що середини сторін просторового чотирикутника (див. рисунок) є вершинами паралелограма (вершини просторового чотирикутника не лежать в одній площині).

Зверніть увагу: якщо ABCD — просторовий чотирикутник, то його діагоналі AC і BD — мимобіжні прямі.


Ознака паралельності прямої і площини

Теорема 1. Якщо пряма, яка не належить площині, паралельна якій-небудь прямій у цій площині, то вона паралельна і самій площині.
Теорема 2. Якщо пряма паралельна площині, то на цій площині знайдеться пряма, яка паралельна даній прямій.
Зверніть увагу: паралельність прямої і площини не означає, що ця пряма паралельна будь-якій прямій на цій площині. Кожна пряма цієї площини буде або паралельна даній, або мимобіжна з нею.

На рисунку: a і b — мимобіжні; .
Теорема 3. Через точку, що не лежить на площині, можна провести безліч прямих, паралельних даній площині, причому всі вони лежать в одній площині (паралельній даній).
Теорема 4. Якщо площина перетинає одну з двох паралельних прямих, то вона перетинає й другу пряму (див. рисунок).
На рисунку .

Дві площини називаються паралельними, якщо вони не перетинаються.

Ознака паралельності площин

Теорема 1. Якщо дві прямі однієї площини, які перетинаються й відповідно паралельні двом прямим другої площини (див. рисунок), то ці площини паралельні.

Теорема 2 (обернена). Якщо в одній площині є дві прямі, які перетинаються, і ці прямі паралельні другій площині, то такі площини паралельні.
Зверніть увагу: прямі мають обов’язково перетинатися. Дійсно, в площині  може бути скільки завгодно прямих, паралельних прямій a (див. рисунок нижче), а значить, і площині , і при цьому площини  і  не будуть паралельними.

Теорема 3. Якщо пряма перетинає одну з двох паралельних площин, то вона перетинає й другу (див. рисунок).

Теорема 4. Через дві мимобіжні прямі можна провести паралельні площини (рисунок нижче ­зліва).
Теорема 5. Через точку поза даною площиною можна провести площину, паралельну даній, і до того ж тільки одну (рисунки нижче).

Теорема 6. Якщо дві площини паралельні третій, то вони паралельні одна одній.

середа, 25 лютого 2015 р.

Довідник властивостей 4-кутників

Четырёхугольником называется фигура, которая состоит из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.
Четырёхугольник называется выпуклым, если он расположен в одной полуплоскости относительно прямой, которая содержит любую из его сторон.
Сумма углов выпуклого четырёхугольника равна 360°:
∠A+∠B+∠C+∠D=360°.
Не существует четырёхугольников, у которых все углы острые или все углы тупые.
Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов:
∠A < ∠B+∠C+∠D,   ∠B < ∠A+∠C+∠D,
∠C < ∠A+∠B+∠D,   ∠D < ∠A+∠B+∠D.
Каждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон:
a < b+c+d,   b < a+c+d,
c < a+b+d,   d < a+b+c.
Площадь произвольного выпуклого четырёхугольника равна:
Диагоналями четырёхугольника называются отрезки, соединяющие его противолежащие вершины.
Диагонали выпуклого четырёхугольника пересекаются, а невыпуклого – нет.
Площадь произвольного выпуклого четырёхугольника:
Если MNPQ – середины сторон выпуклого четырёхугольника ABCD, а  RS – середины его диагоналей, то четырёхугольники MNPQMRPSNSQR являются параллелограммами и называются параллелограммами Вариньона.
Форма и размеры параллелограммов Вариньона связаны с формой и размерами данного четырёхугольника ABCD. Так MNPQ – прямоугольник, если диагонали четырёхугольника ABCDперпендикулярны;  MNPQ – ромб, если диагонали четырёхугольника ABCD равны;  MNPQ – квадрат, если диагонали четырёхугольника ABCD перпендикулярны и равны;
SABCD = 2SMNPQ .
Отрезки  MPNQ и RS называются первой, второй и третьей средними линиями выпуклого четырёхугольника.
В параллелограмме, и только в нём, середины диагоналей совпадают, и потому третья средняя линия вырождается в точку. Для других четырёхугольников средние линии – отрезки.
Все средние линии четырёхугольника пересекаются в одной точке и делятся ею пополам:
MG=GP,   NG=GQ,   RG=GS .
Сумма квадратов средних линий четырёхугольника равна четверти суммы квадратов всех его сторон и диагоналей:
MP2+ NQ2+ RS ¼(AB2+BC2+CD2+AD2+AC2+BD2).
Если β – угол между первой и второй средними линиями четырёхугольника, то его площадь:
SABCD = MP·NQ·sinβ.
 
Равными плитками, которые имеют форму произвольного, не обязательно выпуклого, четырёхугольника можно замостить плоскость так, чтобы не было наложений плиток друг на друга и не осталось непокрытых участков плоскости. 

Описанные четырёхугольники

Четырёхугольник называется описанным около окружности (описанным), если существует такая окружность, которая касается всех его сторон, тогда сама окружность называется вписанной.
Четырёхугольник является описанным тогда и только тогда, кода суммы его противолежащих сторон равны:
a+c = b+d.
Для сторон описанного четырёхугольника и радиуса вписанной в него окружности верно:
a+c ≥ 4r,   b+d ≥ 4r.
Площадь описанного четырёхугольника:
pr,
где r – радиус вписанной окружности, p – полупериметр четырёхугольника.
Площадь описанного четырёхугольника:
Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.
Точки касания вписанной окружности отсекают равные отрезки от углов четырёхугольника:
AK=AN,   BK=BL,   CL=CM,   DM=DN.
Если O – центр окружности, вписанной в четырёхугольник ABCD, то
∠AOB+∠COD=∠BOC+∠AOD=180°.
Для описанного четырёхугольника ABCD со сторонами AB=aBC=b,CD=c и AD=d верны соотношения:

Вписанные четырёхугольники

Четырёхугольник называется вписанным в окружность (вписанным), если существует окружность, проходящая через все его вершины, тогда сама окружность называется описанной около четырёхугольника.
Выпуклый четырёхугольник является описанным тогда и только тогда, когда сумма его противолежащих углов равна 180°:
∠A+∠C=∠B+∠D=180°.
Центр описанной около четырёхугольника окружности является точкой пересечения всех четырёх серединных перпендикуляров сторон этого четырёхугольника.
Первая теорема Птолемея. Выпуклый четырёхугольник тогда и только тогда является вписанным, когда выполняется равенство:
Вторая теорема Птолемея. Выпуклый четырёхугольник тогда и только тогда является вписанным, когда выполняется равенство:
Радиус окружности, описанной около четырёхугольника:
Площадь вписанного четырёхугольника:

Диагонали выпуклого четырёхугольника разбивают каждый его угол на два угла. Углы, опирающиеся на одну сторону, называются связанными углами.
Выпуклый четырёхугольник является вписанным тогда и только тогда, когда у него есть хотя бы одна пара равных связанных углов.
У вписанного четырёхугольника любые два связанных угла равны.
Если четырёхугольник одновременно является описанным и вписанным, то его площадь:
Для радиусов описанной и вписанной окружностей данного четырёхугольника и расстояния между центрами этих окружностей выполняется соотношение:

Параллелограмм

Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны:
AB||CD,   BC||AD.
У параллелограмма противолежащие стороны равны и противолежащие углы равны:
AB=CD,   BC=AD;
∠A=∠C,   ∠B=∠D.
Сумма любых двух соседних углов параллелограмма равна 180°:
∠A+∠B=∠B+∠C=∠C+∠D=∠A+∠D=180°.
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам:
AO=OC;   BO=OD.
Каждая диагональ делит параллелограмм на два равных треугольника:
ABC=∠CDA;   ∠ABD=∠CDB.
Две диагонали параллелограмма делят его на четыре равновеликих треугольника:
SΔABO=SΔBCO=SΔCDO=SΔADO.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:
e2+f= a2+b2+a2+b= 2(a2+b2). 
Признаки параллелограмма:
  • Если у четырёхугольника противолежащие стороны попарно равны, то этот четырёхугольник – параллелограмм.
  • Если у четырёхугольника две противолежащие стороны равны и параллельны, то этот четырёхугольник – параллелограмм.
  • Четырёхугольник, диагонали которого в точке пересечения делятся пополам – параллелограмм.
  • Если  у четырёхугольника противолежащие углы попарно равны, то этот четырёхугольник – параллелограмм.
Высотой параллелограмма называется перпендикуляр, проведённый из вершины параллелограмма к неприлежащей стороне:
h= b·sin γ;   h= a·sin γ.
Площадь параллелограмма можно определить:
  • через его сторону и высоту, проведённую к ней:
ahbhb;
  • через две его стороны и угол между ними:
ab·sin γ.

Ромб

Ромбом называется параллелограмм, у которого все стороны равны:
AB=BC=CD=AD.
Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов:
ACBD;
ABD=∠CBD=∠ADB=∠CDB;   ∠BAC=∠DAC=∠BCA=∠DCA.
В любой ромб можно вписать окружность с центром в точке пересечения его диагоналей.
Радиус окружности, вписанной в ромб, можно вычислить:
  • через высоту ромба:
  • через диагонали ромба и сторону:
  • через отрезки, на которые делит сторону ромба точка касания:
Площадь ромба можно определить:
  • через диагонали:
  • через сторону и угол ромба:
  • через сторону и высоту:
  • через сторону и радиус вписанной окружности:

Прямоугольник


Прямоугольником называется параллелограмм, у которого все углы прямые:
∠A=∠B=∠C=∠D=90°.
Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка:
AC=BD;
AO=BO=CO=DO.
Площадь прямоугольника можно определить:
  • через его стороны:
ab;
  • через диагонали и угол между ними:
½d²·sin γ.

Около любого прямоугольника можно описать окружность с центром в точке пересечения его диагоналей и радиусом, который равен половине диагонали:
BD 2R.

Квадрат


Квадрат – это прямоугольник, у которого все стороны равны:
A=∠B=∠C=∠D=90°,
AB=BC=CD=AD.
Диагонали квадрата равны и перпендикулярны.
Сторона и диагональ квадрата связаны соотношениями:
Площадь квадрата:
У квадрата центры вписанной и описанной окружностей совпадают и находятся в точке пересечения его диагоналей.
Радиус описанной окружности:
Радиус вписанной окружности:

Трапеция

Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны:
AD||BC.
Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.
Высота трапеции – перпендикуляр, проведённый из произвольной точки одного основания трапеции к прямой, содержащей другое основание трапеции.  
Средней линией (первой средней линией) трапеции называется отрезок, который соединяет середины боковых сторон данной трапеции:
AK=KB;   CL=LD.
Средняя линия трапеции параллельна её основаниям и равна их полусумме:
KL||AD;   KL||BC;
KL = ½(AD+BC).
При продолжении до пересечения боковых сторон трапеции образуются два подобных треугольника с коэффициентом подобия, равным отношению основ:
ΔAEDΔBEC,   k=AD/BC.
Треугольники, образованные основами и отрезками диагоналей подобны с коэффициентом подобия, равным отношению основ:
ΔAОDΔCОВ,   k=AD/BC.
Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны:
SΔABO SΔCDO.
Отрезок, соединяющий середины оснований (вторая средняя линия) трапеции, проходит через точку пересечения диагоналей, а его продолжение – через точку пересечения продолжений боковых сторон:
O∈KL;   E∈KL.
Отрезок, соединяющий середины диагоналей (третья средняя линия) трапеции, параллелен основаниям и равен их полуразности:
RS||AD;   RS||BC;
RS ½(AD–BC).
В трапецию можно вписать окружность, если сумма её основ равна сумме боковых сторон:
AD+BC=AB+CD.
Центром вписанной в трапецию окружности является точка пересечения биссектрис внутренних углов трапеции.
В трапецию АВСD с основаниями AD и BC можно вписать окружность тогда и только тогда, когда выполняется хотя бы одно из равенств:
Боковые стороны трапеции видны из центра окружности, вписанной в данную трапецию, под прямым углом:
AOB=∠COD=90°.
Радиус вписанной в трапецию окружности можно определить:
  • через высоту:
  • через отрезки, на которые делится боковая сторона точкой касания:
Равнобокой называется трапеция, у которой боковые стороны равны:
AB=CD
У равнобокой трапеции:
  • диагонали равны:
AC=BD;
  • углы при основании равны:
A=∠D,   ∠B=∠C;
  • сумма противолежащих углов равна 180?:
∠A+∠C=∠B+∠D=180°.
Около трапеции можно описать окружность тогда и только тогда, когда она равнобокая.
Стороны и диагональ равнобокой трапеции связаны соотношением:
d² ab+c².

Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.
Площадь трапеции можно определить:
  • через полусумму оснований (первую среднюю линию) и высоту:
  • через диагонали и угол между ними:
 

Дельтоид

                         
Дельтоид называется четырёхугольник, который имеет две пары равных соседних сторон.
Дельтоид может быть выпуклым или невыпуклым.
Прямые, содержащие диагонали любого дельтоида пересекаются под прямым углом.
В любом дельтоиде углы между соседними неравными сторонами равны.
Площадь любого дельтоида можно определить:
  • через его диагонали:
  • через две соседние неравные стороны и угол между ними:
ab·sin α .
 
В любой выпуклый дельтоид можно вписать окружность.
Если выпуклый дельтоид не является ромбом, то существует окружность, касающаяся продолжений всех четырёх сторон данного дельтоида.
Для невыпуклого дельтоида можно построить окружность, касающуюся двух сторон большей длины и продолжений двух меньших сторон, а также окружность, касающуюся двух меньших сторон и продолжений двух сторон большей длины.   

Вокруг дельтоида можно описать окружность тогда и только тогда, когда его неравные стороны образуют углы по 90°.
Радиус окружности, описанной около дельтоида можно определить через две его неравные стороны:

Ортодиагональные четырёхугольники

Четырёхугольник называется ортодиагональным, если его диагонали пересекаются под прямым углом.
Четырёхугольник является ортодиагональным тогда и только тогда, когда выполняется одно из условий:
  • для сторон четырёхугольника верно: a²+c² b²+d²;
  • для площади четырёхугольника верно: ½ef;
  • параллелограмм Вариньона с вершинами в серединах сторон четырёхугольника является прямоугольником.


Сумма квадратов противолежащих сторон вписанного в окружность ортодиагонального четырёхугольника равна квадрату диаметра описанной окружности:
a²+c² b²+d² 4.
Ортодиагональный четырёхугольник является описанным около окружности тогда и только тогда, когда произведения его противолежащих сторон равны:
ac bd.
Если ABCD – ортодиагональный четырёхугольник, описанный около окружности с центром в точке О, то верны соотношения: